- ©«¤l
 - 112 
 - ¥DÃD
 - 19 
 - ºëµØ
 - 0 
 - ¿n¤À
 - 136 
 - ÂI¦W
 - 0  
 - §@·~¨t²Î
 - window 
 - ³nÅ骩¥»
 - excel 
 - ¾\ŪÅv
 - 20 
 - ©Ê§O
 - ¨k 
 - µù¥U®É¶¡
 - 2013-3-12 
 - ³Ì«áµn¿ý
 - 2022-11-29 
 
   
 | 
                
ºô¸ô¤W¬Ý¨ìªº¡A¤£¾å±o¦X¥Î§_¡ã 
 
¾É¥Xªº¼Æ¾Ç¨ç¼Æ 
    
 
¥H¤U¬°«D°ò¥»¼Æ¾Ç¨ç¼Æªº¦Cªí¡A¬Ò¥i¥Ñ°ò¥»¼Æ¾Ç¨ç¼Æ¾É¥X¡G 
 
¨ç¼Æ ¥Ñ°ò¥»¨ç¼Æ¾É¥X¤§¤½¦¡  
Secant¡]¥¿³Î¡^ Sec(X) = 1 / Cos(X)  
Cosecant¡]§E³Î¡^ Cosec(X) = 1 / Sin(X)  
Cotangent¡]¾l¤Á¡^ Cotan(X) = 1 / Tan(X)  
Inverse Sine  
¡]¤Ï¥¿©¶¡^ 
Arcsin(X) = Atn(X / Sqr(-X * X + 1))  
Inverse Cosine  
¡]¤Ï§E©¶¡^ 
Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)  
Inverse Secant  
¡]¤Ï¥¿³Î¡^ 
Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))  
Inverse Cosecant  
¡]¤Ï§E³Î¡^ 
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))  
Inverse Cotangent  
¡]¤Ï¾l¤Á¡^ 
Arccotan(X) = Atn(X) + 2 * Atn(1)  
Hyperbolic Sine  
¡]Âù¦±¥¿©¶¡^ 
HSin(X) = (Exp(X) - Exp(-X)) / 2   
Hyperbolic Cosine  
¡]Âù¦±§E©¶¡^ 
HCos(X) = (Exp(X) + Exp(-X)) / 2  
Hyperbolic Tangent  
¡]Âù¦±¥¿¤Á¡^ 
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))  
Hyperbolic Secant  
¡]Âù¦±¥¿³Î¡^ 
HSec(X) = 2 / (Exp(X) + Exp(-X))  
Hyperbolic Cosecant¡]Âù¦±§E³Î¡^ HCosec(X) = 2 / (Exp(X) - Exp(-X))  
Hyperbolic Cotangent¡]Âù¦±¾l¤Á¡^ HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))  
Inverse Hyperbolic Sine¡]¤ÏÂù¦±¥¿©¶¡^ HArcsin(X) = Log(X + Sqr(X * X + 1))  
Inverse Hyperbolic Cosine¡]¤ÏÂù¦±§E©¶¡^ HArccos(X) = Log(X + Sqr(X * X - 1))  
Inverse Hyperbolic Tangent¡]¤ÏÂù¦±¥¿¤Á¡^ HArctan(X) = Log((1 + X) / (1 - X)) / 2  
Inverse Hyperbolic Secant¡]¤ÏÂù¦±¥¿³Î¡^ HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)  
Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)  
Inverse Hyperbolic Cotangent  
¡]¤ÏÂù¦±¾l¤Á¡^ 
HArccotan(X) = Log((X + 1) / (X - 1)) / 2  
¥H N ¬°©³ªº¹ï¼Æ LogN(X) = Log(X) / Log(N)  
 
 
'¨ãÅé©w¸q¦p¤U¡G 
 
Public Function ArcSin(ByVal X As Double) As Double  '¤Ï¥¿©¶ 
    ArcSin = Atn(X / Sqr(-X * X + 1)) 
End Function 
 
Public Function ArcCos(ByVal X As Double) As Double  '¤Ï§E©¶ 
    ArcCos = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) 
End Function 
 
Public Function ArcCoTan(ByVal X As Double) As Double  '¤Ï¥¿³Î 
    ArcCoTan = Atn(X) + 2 * Atn(1) 
End Function 
 
Public Function Sec(ByVal X As Double) As Double     '¥¿³Î 
     Sec = 1 / Cos(X) 
End Function 
 
Public Function CoSec(ByVal X As Double) As Double     '§E³Î 
     CoSec = 1 / Sin(X) 
End Function 
 
Public Function CoTan(ByVal X As Double) As Double     '¾l¤Á 
     CoTan = 1 / Tan(X) 
End Function 
 
Public Function ArcCoSec(ByVal X As Double) As Double     '¤Ï§E³Î 
     ArcCoSec = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1)) 
End Function 
 
Public Function ArcCoTan(ByVal X As Double) As Double     '¤Ï¾l¤Á 
     ArcCoTan = Atn(X) + 2 * Atn(1) 
End Function 
 
Public Function HSin(ByVal X As Double) As Double     'Âù¦±¥¿©¶ 
     HSin = (Exp(X) - Exp(-X)) / 2 
End Function 
 
Public Function HCos(ByVal X As Double) As Double     'Âù¦±§E©¶ 
     HCos = (Exp(X) + Exp(-X)) / 2 
End Function 
 
Public Function HTan(ByVal X As Double) As Double     'Âù¦±¥¿¤Á 
     HTan = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) 
End Function 
 
Public Function HSec(ByVal X As Double) As Double     'Âù¦±¥¿³Î 
     HSec = 2 / (Exp(X) + Exp(-X)) 
End Function 
 
Public Function HCosec(ByVal X As Double) As Double     'Âù¦±§E³Î 
     HCosec = 2 / (Exp(X) - Exp(-X)) 
End Function 
 
Public Function HCotan(ByVal X As Double) As Double     'Âù¦±¾l¤Á 
     HCotan = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) 
End Function 
 
Public Function HArcsin(ByVal X As Double) As Double     '¤ÏÂù¦±¥¿©¶ 
     HArcsin = Log(X + Sqr(X * X + 1)) 
End Function 
 
Public Function HArccos(ByVal X As Double) As Double     '¤ÏÂù¦±§E©¶ 
     HArccos = Log(X + Sqr(X * X - 1)) 
End Function 
 
Public Function HArcsec(ByVal X As Double) As Double     '¤ÏÂù¦±¥¿³Î 
     HArcsec = Log((Sqr(-X * X + 1) + 1) / X) 
End Function 
 
Public Function HArccosec(ByVal X As Double) As Double     '¤ÏÂù¦±§E³Î 
     HArccosec = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X) 
End Function 
 
Public Function HArccotan(ByVal X As Double) As Double     '¤ÏÂù¦±¾l¤Á 
     HArccotan = Log((X + 1) / (X - 1)) / 2 
End Function 
 
Public Function LogN(ByVal X As Double) As Double     '¥H N ¬°©³ªº¹ï¼Æ 
     LogN = Log(X) / Log(N) 
End Function |   
 
 
 
 |