- ©«¤l
- 112
- ¥DÃD
- 19
- ºëµØ
- 0
- ¿n¤À
- 136
- ÂI¦W
- 0
- §@·~¨t²Î
- window
- ³nÅ骩¥»
- excel
- ¾\ŪÅv
- 20
- ©Ê§O
- ¨k
- µù¥U®É¶¡
- 2013-3-12
- ³Ì«áµn¿ý
- 2022-11-29
|
ºô¸ô¤W¬Ý¨ìªº¡A¤£¾å±o¦X¥Î§_¡ã
¾É¥Xªº¼Æ¾Ç¨ç¼Æ
¥H¤U¬°«D°ò¥»¼Æ¾Ç¨ç¼Æªº¦Cªí¡A¬Ò¥i¥Ñ°ò¥»¼Æ¾Ç¨ç¼Æ¾É¥X¡G
¨ç¼Æ ¥Ñ°ò¥»¨ç¼Æ¾É¥X¤§¤½¦¡
Secant¡]¥¿³Î¡^ Sec(X) = 1 / Cos(X)
Cosecant¡]§E³Î¡^ Cosec(X) = 1 / Sin(X)
Cotangent¡]¾l¤Á¡^ Cotan(X) = 1 / Tan(X)
Inverse Sine
¡]¤Ï¥¿©¶¡^
Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Cosine
¡]¤Ï§E©¶¡^
Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
Inverse Secant
¡]¤Ï¥¿³Î¡^
Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant
¡]¤Ï§E³Î¡^
Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent
¡]¤Ï¾l¤Á¡^
Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine
¡]Âù¦±¥¿©¶¡^
HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine
¡]Âù¦±§E©¶¡^
HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent
¡]Âù¦±¥¿¤Á¡^
HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant
¡]Âù¦±¥¿³Î¡^
HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant¡]Âù¦±§E³Î¡^ HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent¡]Âù¦±¾l¤Á¡^ HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine¡]¤ÏÂù¦±¥¿©¶¡^ HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine¡]¤ÏÂù¦±§E©¶¡^ HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent¡]¤ÏÂù¦±¥¿¤Á¡^ HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant¡]¤ÏÂù¦±¥¿³Î¡^ HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent
¡]¤ÏÂù¦±¾l¤Á¡^
HArccotan(X) = Log((X + 1) / (X - 1)) / 2
¥H N ¬°©³ªº¹ï¼Æ LogN(X) = Log(X) / Log(N)
'¨ãÅé©w¸q¦p¤U¡G
Public Function ArcSin(ByVal X As Double) As Double '¤Ï¥¿©¶
ArcSin = Atn(X / Sqr(-X * X + 1))
End Function
Public Function ArcCos(ByVal X As Double) As Double '¤Ï§E©¶
ArcCos = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)
End Function
Public Function ArcCoTan(ByVal X As Double) As Double '¤Ï¥¿³Î
ArcCoTan = Atn(X) + 2 * Atn(1)
End Function
Public Function Sec(ByVal X As Double) As Double '¥¿³Î
Sec = 1 / Cos(X)
End Function
Public Function CoSec(ByVal X As Double) As Double '§E³Î
CoSec = 1 / Sin(X)
End Function
Public Function CoTan(ByVal X As Double) As Double '¾l¤Á
CoTan = 1 / Tan(X)
End Function
Public Function ArcCoSec(ByVal X As Double) As Double '¤Ï§E³Î
ArcCoSec = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
End Function
Public Function ArcCoTan(ByVal X As Double) As Double '¤Ï¾l¤Á
ArcCoTan = Atn(X) + 2 * Atn(1)
End Function
Public Function HSin(ByVal X As Double) As Double 'Âù¦±¥¿©¶
HSin = (Exp(X) - Exp(-X)) / 2
End Function
Public Function HCos(ByVal X As Double) As Double 'Âù¦±§E©¶
HCos = (Exp(X) + Exp(-X)) / 2
End Function
Public Function HTan(ByVal X As Double) As Double 'Âù¦±¥¿¤Á
HTan = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
End Function
Public Function HSec(ByVal X As Double) As Double 'Âù¦±¥¿³Î
HSec = 2 / (Exp(X) + Exp(-X))
End Function
Public Function HCosec(ByVal X As Double) As Double 'Âù¦±§E³Î
HCosec = 2 / (Exp(X) - Exp(-X))
End Function
Public Function HCotan(ByVal X As Double) As Double 'Âù¦±¾l¤Á
HCotan = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
End Function
Public Function HArcsin(ByVal X As Double) As Double '¤ÏÂù¦±¥¿©¶
HArcsin = Log(X + Sqr(X * X + 1))
End Function
Public Function HArccos(ByVal X As Double) As Double '¤ÏÂù¦±§E©¶
HArccos = Log(X + Sqr(X * X - 1))
End Function
Public Function HArcsec(ByVal X As Double) As Double '¤ÏÂù¦±¥¿³Î
HArcsec = Log((Sqr(-X * X + 1) + 1) / X)
End Function
Public Function HArccosec(ByVal X As Double) As Double '¤ÏÂù¦±§E³Î
HArccosec = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
End Function
Public Function HArccotan(ByVal X As Double) As Double '¤ÏÂù¦±¾l¤Á
HArccotan = Log((X + 1) / (X - 1)) / 2
End Function
Public Function LogN(ByVal X As Double) As Double '¥H N ¬°©³ªº¹ï¼Æ
LogN = Log(X) / Log(N)
End Function |
|